
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of  
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, 
royalty- 
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos 
National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los 
Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does 
not endorse the  
viewpoint of a publication or guarantee its technical correctness. 

FORM 836 (10/96) 

 

LA-UR-02-4849 
Approved for public release;  
distribution is unlimited. 

 

Title: Use of Predictive Performance Modeling During Large-
Scale System Installation 

 
Author(s): 

 
Darren J. Kerbyson 
Adolfy Hoisie 
Harvey J. Wasserman 

 
Submitted to: 

 
1st Int. Workshop on Hardware/Software Support for Parallel 

and Distributed Scientific and Engineering Computing, 
SPDEC-02, Charlottesville, September 2002 



 

Use of Predictive Performance Modeling During  
Large-Scale System Installation 

 
Darren J. Kerbyson, Adolfy Hoisie, and Harvey J. Wasserman 

Parallel Architectures and Performance Team 
Modeling, Algorithms and Informatics Group, CCS-3 

Los Alamos National Laboratory 
Los Alamos, NM 87545 

Email: {djk, hoisie, hjw}@lanl.gov 
 
 

Abstract 
 

In this paper we describe an important use of predictive application performance 
modeling – the validation of measured performance during a new large-scale system 
installation. Using a previously-developed and validated performance model for 
SAGE, a multidimensional, 3D, multi-material hydrodynamics code with adaptive 
mesh refinement, we were able to help guide the stabilization of the first phase of the 
Los Alamos ASCI Q supercomputer. We review the salient features of an analytical 
model for this code that has been applied to predict its performance on a large class of 
tera-scale parallel systems.  We describe the methodology applied during system 
installation and upgrades to establish a baseline for the achievable “real” performance 
of the system. We also show the effect on overall application performance of certain 
key subsystems such as PCI bus speed and multirail networks.  We show that 
utilization of predictive performance models is also a powerful system debugging 
tool. 

 
 

1. Introduction 
 
We have previously reported the development and validation of an analytical model that 
captured the performance and scaling characteristics of an important ASCI application [1].  
We have also described one interesting use of the model to predict the effect on runtime of a 
key algorithmic change to the application enabling a different parallel decomposition 
method.   
 
In this paper we report another interesting use of this same model. Los Alamos National 
Laboratory (LANL) is currently involved in the installation of a Tera-scale computing system 
called ASCI Q that comprises a large and growing number of compute servers with an 
interconnect fabric composed of federated switches. The installation of a system with such a 
large number of components is subject to a variety of both hardware- and software-related 
issues that effectively result in a “stabilization period” during which the system’s 
performance may be sub-par. The question is: how does one identify sub-par performance in 
a large-scale parallel system, especially one that is larger than any previously available for 
testing. Performance observations made on a newly-installed system do not necessarily 



 

represent just the cost of processing the workload but often include temporary idiosyncrasies 
of the hardware and system software, i.e., bugs, faulty or poorly configured hardware 
components, and so on. 
 
We report here our experiences using a performance model to validate the measured 
performance during system integration of (part of) ASCI Q.  Several sets of measurements of 
the application performance were made on the system during installation over a period of 
months. Only after several iterations of hardware refinements and software fixes did the 
performance of the system achieve the performance predicted by the model.  The model did 
not necessarily reveal precisely what hardware/software refinements were needed; however, 
it was ultimately the only way to determine that no such further refinements were necessary.  
Along the way the model and corresponding system measurements exposed several 
important performance characteristics associated with ASCI Q, such as the effect of PCI bus 
speed and the effect of multi-rail networks on overall application performance.   
 
 
2. The Alpha-Server ES45 Supercomputing System 
 
The system considered here consists of 512 AlphaServer ES45 nodes.  Each node contains 
four 1-GHz Alpha EV68 processors that are internally connected using two 4-GB/s memory 
buses to 16 GB of main memory.  Each processor has an 8-MB unified level-2 cache, and a 
64-KB L1 data cache. The Alpha processor has a peak performance of 2 floating point 
operations per cycle. Thus this first phase of the Q machine has a peak performance of 4 
Tflops.  

 
Nodes are interconnected using the Quadrics QsNet high-performance network. This network 
boasts high-performance communication with a typical MPI latency of 5µs and a peak 
throughput of 340 MB/s in one direction (detailed measured performance data are discussed 
in Section 4). The Quadrics network contains two components – the Elan network interface 
card (NIC), and the Elite switch. The Elan/Elite components are used to construct a 
quaternary fat-tree topology (Figure 1). A quaternary fat-tree of dimension n is composed of 
4n processing nodes and n.4n-1 switches interconnected as a delta network. Each Elite switch 
contains an internal 16x8 full crossbar. A detailed description of the Quadrics network can be 
found in [4]. 
 

 

Figure 1. Network topology for a dimension 3 quaternary fat-tree network with 64 nodes 

In order to implement a single rail (a single fat-tree network), a single Elan PCI interface 
card is used per node, in addition to a number of Elite switch boxes. The Elite switches are 
packaged in 128-way boxes. The first level of boxes implements the first three levels of the 
fat-tree and consists of 64 down and 64 up ports. The second level of boxes implements the 



 

upper two levels of the fat-tree and consists of 128 down ports. Thus, in the 512-node 
system, 12 switch boxes are utilized to provide a fat-tree of dimension 5 as illustrated in 
Figure 2. 

 

 
Figure 2. Interconnection of a federated Quadric network for a dimension 5 fat-tree 

 
Using multiple independent networks, also known as “rails” is an emerging technique to 
overcome bandwidth limitations and to enhance fault tolerance [8].  The system being 
installed at Los Alamos contains two rails, i.e. two Elan cards on separate PCI interfaces per 
node, and two complete sets of Elite switches.   
 
 
3. The Application and the Model 
 
The application used to analyze the performance of the ES45 cluster is SAGE (SAIC's 
Adaptive Grid Eulerian hydrocode). It is a multidimensional (1D, 2D, and 3D), 
multimaterial, Eulerian hydrodynamics code with adaptive mesh refinement (AMR) 
consisting of 100,000+ lines of Fortran 90 code using MPI for inter-processor 
communications. It comes from the LANL Crestone project, whose goal is the investigation 
of continuous adaptive Eulerian techniques to stockpile stewardship problems. SAGE has 
also been applied to a variety of problems in many areas of science and engineering 
including: water shock, energy coupling, cratering and ground shock, stemming and 
containment, early time front end design, explosively generated air blast, and hydrodynamic 
instability problems [5]. SAGE represents a large class of production ASCI applications at 
Los Alamos that routinely run on 1,000’s of processors for months at a time. 

 
A detailed description of SAGE, the adaptive mesh processing, and the characteristics of its 
parallel scaling were described previously [1] in which we developed and validated the 
performance model.  The salient features of the model are given in Appendix A of this paper. 
Table 1 gives a summary of the validation results in terms of average and maximum 
prediction errors across all processor configurations measured.  It can be seen that the model 
is highly accurate with an average prediction error of 5% and maximum of 11% being typical 
across all machines.  These data were not reported previously.   
 
 

… 
64 

… … … … … … … 

16 

64 64 64 64 64 64 64 



 

Table 1. SAGE performance model validation results 

System Number of 
Configurations 

tested 

Maximum 
Processors 

tested  

Maximum 
error (%) 

Average 
error 
(%) 

ASCI Blue (SGI O2K) 13 5040 12.6 4.4 
ASCI Red (Intel Tflops) 13 3072 10.5 5.4 
ASCI White (IBM SP3) 19 4096 11.1 5.1 
Compaq AlphaServer ES40 10 464 11.6 4.7 
Cray T3E 17 1450 11.9 4.1 

4. Use of the SAGE model to validate system performance 

The model is parametric in terms of certain basic system-related features such as the 
sequential processing time and the communication network performance; these had to be 
obtained via measurements on a small system and are listed in Table 2. The SAGE model is 
based on weak scaling in which the global problem size grows proportionally with the 
number of processors. The subgrid size remains constant at approximately 13,500 cells per 
subgrid. 

 
The installation process required that the model predict performance for the  first phase of the 
ASCI Q system with two different PCI bus speeds (initially 33 MHz and later 66MHz). The 
speed of the PCI bus determines the available bandwidth between the Quadrics NIC and the 
processor memory and thus it can have a significant impact on the performance of any 
parallel application. In addition, when two NICs are present within the node (in a 2-rail 
system), the asymptotic bandwidth increases by approximately 180% if simultaneous 
messages can take advantage of the two rails [4]. Individual messages are not striped across 
rails. 
 

Table 2. Measured ES45 Performance Parameters for the SAGE Model 

Parameter 33 MHz PCI bus 66 MHz PCI bus 

Tcomp(E)    (s) 0.38 0.38 

Lc(S)       (µs)     








>
≤≤

<

5124.17

5126470.9

6400.9

S

S

S
     







>
≤≤

<

5128.13
5126444.6

6410.6

S
S

S  

1/Bc(S)    (ns)     








>
≤≤

<

5128.12

512648.17

640.0

S

S

S
     







>
≤≤

<

51230.8
512642.12

640.0

S
S

S  

Tmem(P)   (µs)     




>
=

28.4
28.1

P
P      





>
=

28.4
28.1

P
P  



 

4.1 Expected Performance 

The performance model was used to provide the expected performance of SAGE on the ES45 
system with a 33-MHz and 66-MHz PCI bus using one and two Quadrics rails. These 
predictions are shown in Figure 3. 
 

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000
# PEs

C
yc

le
 T

im
e 

(s
)

33MHz PCI, 1 Rail

33MHz PCI, 2 Rail

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000
# PEs

C
yc

le
 T

im
e 

(s
)

66MHz PCI, 1 Rail

66MHz PCI, 2 Rail

 

Figure 3. Performance predictions of SAGE on an ES45 system with QsNet with a) 33-MHz 
PCI bus, and b) 66-MHz PCI bus.  

We note the following observations: 1) since the runs of SAGE were performed for weak 
scaling, the time should ideally be constant across all processor configurations; 2) the 
predicted performance is better when using 2 rails than that when using 1 rail. This occurs 
after a certain point (48 processors) – the point at which a domain is mapped to more than 
one processor. At this point a node generates more than one simultaneous out-of-node 
communications for gather/scatter operations whereas below this point it was only one; 3) the 
model predicts that the two-fold improvement in PCI bus speed results in only a 20% 
performance improvement in the code; 4) the SAGE cycle time is predicted to plateau above 
512 processors – this is the point at which all gather/scatter communications are out-of-node. 

4.2 Measured Performance 

Table 3 summarizes the test conditions on each test date. The performance of SAGE was 
measured at several points after the installation of the machine had taken place: as soon as 
the machine was up and running (Sept. 9th), after a O/S upgrade from EFT 1.0 to EFT 2.0 
and faulty hardware was replaced (Sept. 24th), and after an O/S patch (Oct. 24th). The 
upgrades that were most significant in terms of performance included bug fixes to the 
Quadrics RMS resource scheduling software and O/S patches that affected the priority of a 
process that determined the allocation of the two rails.  Interestingly, this affected both 1- and 
2-rail performance. These three sets of measurements, which are based on the 33-Mhz PCI 
bus, are compared with the model in Figure 4 (runtime vs. configuration in Figure 4a and 
percent error vs. configuration in Figure 4b). 



 

The corresponding model prediction and measurements based on the 66-MHz PCI bus are 
shown in Figure 5. Initially (Jan 4th), not all nodes ran at 66 MHz. By Feb 2nd this had been 
resolved; however, not all nodes were available for testing. The Quadrics QsNet requires 
contiguous nodes in order to use its hardware-based collective operations. When nodes are 
configured out then a software component in the collectives is required which reduces overall 
performance. By April 20th all nodes were configured in and SAGE achieved the 
performance predicted by the model at all configurations except for 512 nodes. 
 
Figures 4a and 5a show that only after all the upgrades and system debugging had taken 
place that the measurements matched the expected performance. Without the model, it would 
have been difficult to know conclusively when to stop debugging, or more importantly when 
not to. When differences did occur between the model and measurements, microkernel 
benchmarks were run on the computational nodes and the communication network to help 
identify the source of the problem.   

 

Table 3. Summary of Test Conditions 

Date OS 
Version 

# of Nodes in 
System 

Performance Issues 

Sept 9 EFT 1.0 128 Some faulty nodes and communication links 
resulted in poor / noisy communication 
performance, especially on 2 rails 

Sept 24 EFT 2.0 128 Faulty hardware replaced but still poor 2-rail 
performance 

Oct 24 EFT 2.1 128 2-Rail OS patch improved Quadrics Performance 
Jan 4 EFT 3.0 512 PCI bus upgraded to 66 MHz; SAGE 

performance reverted to pre-Oct-24 performance 
because not all nodes successfully ran at 66 MHz.   

Feb 2 EFT 3.0 512 All nodes at 66 MHz but some nodes configured 
out causing lower performance in collective 
communication such as barrier 

April 20 EFT 4.0 512 All nodes configured in so barrier performance 
improved 

 



 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 10 100 1000 10000
# PEs

C
yc

le
 T

im
e 

(s
)

Measured (Sept 9th 01)

Measured (Sept 24th)
Measured (Oct 24th 01)

Prediction (33MHz PCI, 1 Rail)

 

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1000
# PEs

E
rr

o
r 

(%
)

33MHz PCI, 1 Rail

33MHz PCI, 2 Rail

 

Figure 4. Measured performance of SAGE (33MHz PCI bus) compared with model 
predictions. a) Measurement history and model predictions using a single rail, and b) error 
between final measurements and model when using either 1 or 2 rails. 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000
# PEs

C
yc

le
 T

im
e 

(s
)

Measured (Jan 4th 02)

Measured (Feb 2nd 02)
Measured (April 20th 02)

Prediction (66MHz PCI, 1 Rail)

 

0

2

4

6

8

10

12

14

16

18

20

1 10 100 1000 10000
# PEs

E
rr

o
r 

(%
)

66MHz PCI, 1 Rail

 

Figure 5. Measured performance of SAGE (66MHz PCI bus) compared with model 
predictions. a) Measurement history and model predictions using a single rail, and b) error 
between final measurements and model on 1 rail. 

 
5. Summary 

 
Our team’s research over the last few years has focused on the development of analytical 
performance models for the ASCI workload.  It has been said that modeling and predicting 
the performance of large-scale applications on HPC systems, is one of the great, unsolved 
challenges for computer science [9]. Clearly, ASCI has a critical need for information on 
how best to map a given application to a given architecture, and performance modeling is the 



 

only means by which such information can be obtained quantitatively. Our approach has 
been successfully demonstrated for the 100,000-line+ adaptive mesh code reported here, for 
structured [3] and unstructured mesh transport codes [10], and for a Monte-Carlo particle 
transport code [11]. 
 
The work reported in this paper represents a small but important step in applying our 
performance models in a very practical way. We expect that ASCI platforms and software 
will be performance engineered, and that models will provide the means for this. The models 
can play a role throughout a system’s lifecycle: starting at design when no hardware is 
available for measurement, in procurement for the comparison of systems, through to 
implementation / installation, and to examine the effects of updating a system over time. At 
each point the performance model provides an expectation of the achievable performance 
with a high level of fidelity. The SAGE performance model has been used for procurement 
purposes but company-sensitive information precludes disclosure of this in the literature.  We 
can report, as here, how the model becomes the tool for assessing machine performance.  
Implementation milestone tests related to ASCI Q contractual obligations will be based 
partially on comparison of observed data with predictions from the SAGE model, in a 
manner similar to the process described in this paper. 
 
When installing a new system, refinements to both the software system, and hardware 
components, are often necessary before the machine operates at the expected level of 
performance. The performance model for SAGE has been shown to be of great use in this 
process. The model has effectively provided the performance and scalability baseline for the 
system performance on a realistic workload. Initial system testing showed that its 
performance was almost 50% less than expected. After several system refinements and 
upgrades over a number of months, the achieved performance matched exactly the 
expectation provided by the model. Thus, performance models can be used to validate system 
performance. 

References 

1. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.L.: 
“Predictive Performance and Scalability Modeling of a Large-scale Application,” in 
Proc SC2001, Denver (2001) 

 
2. Worley. P.H.: Performance “Tuning and Evaluation of a Parallel Community Climate 

Model,” in Proc. SC99, Portland (1999) 
 
3. Hoisie. A., Lubeck, O., Wasserman. H.: Performance and Scalability Analysis of 

Teraflop-Scale Parallel Architectures Using Multidimensional Wavefront Applications, 
Int. J. of High Performance Computing Applications, 14 (2000) 330-346 

 
4. Petrini, F., Feng, W.C., Hoisie, A., Coll, S., Frachtenberg, E.: The Quadrics Network: 

High-Performance Clustering Technology, IEEE Micro, 22(1) (2002) 46-57 
 



 

5. Weaver, R.: Major 3-D Parallel Simulations, BITS -Computing and communication 
news, Los Alamos National Laboratory, June/July, 1999, 9-11, 
http://www.lanl.gov/orgs/cic/cic6/bits/99june_julybits/opener.html 

 
6. Goedecker, S., Hoisie, A.: Performance Optimization of Numerically Intensive Codes, 

Society for Industrial & Applied Methematics; ISBN: 0898714842  (2001) 
 
7. Nudd, G.R., Kerbyson, D.J., et.al. PACE: A Toolset for the Performance Prediction of 

Parallel and Distributed Systems, Int. J. of High Performance Computing Applications, 
14 (2000) 228-251 

 
8. Coll, S., Frachtenberg, E., Petrini, F., Hoisie, A., and Gurvits, L, Using Multirail 

Networks in High-Performance Clusters, Proceedings of Cluster2001, Newport Beach, 
CA, October 2001. 

 
9. See http://perc.nersc.gov/main.htm.   
 
10. Kerbyson, D. J., Pautz, S. D., and Hoisie, A., “Predictive Modeling of Parallel SN 

Sweeps on Unstructured Meshes”, Los Alamos National Laboratory report LA-UR-02-
2662, May 2002. 

 
11. Mathis, M., Kerbyson, D. J., Hoisie, A., and Wasserman, H.J., “Performance Modeling 

of MCNP on Large-Scale Systems”, Los Alamos Computer Science Institute 
Symposium, Santa Fe, October 2002. 



 

Appendix A: SAGE model 
 

The complete model is described below. Details on the development of the model can be 
found in [1]. 

 
The model assumes weak-scaling - that is the sub-domain on each processor is constant for 
all processor counts. In SAGE, a 3-D spatial domain is assumed which is sub-divided in 1-D 
only. The volume of this spatial domain is: 

 
V = E.P = L3        (A.1) 
 

where P is the number of PEs, and E is the number of level 0 cells per PE. 
 

The runtime for one cycle of the code is given by: 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )PMTDETAT

DEPTPT
DEPTDETEPT

i

i

cmloadicombineidivide

iGScommallreduce

imemconicompcycle

,.

,,
.,.,,,,

++
++
++=cmMAD

 (A.2) 

where 
 

D is the cell division factor [1..8maxlevel], A is the maximum number of cells added (over all 
processors) through the AMR division process, and Mcm is the maximum number of cells 
moved between any two PEs in the load balancing. Note that D, A, and Mcm are defined as a 
vector whose elements are defined on a per cycle basis.  

 
Tcomp(E.Di) is the sequential computation time for E.Di cells (normally measured). 
Tmemcon(P,E. Di) is the memory contention that may occur between PEs within an SMP box 
TGScomm(P,E,Di) is the gather and scatter communication time 
Tallreduce(P) is the collective allreduce communication time 
Tdivide(Ai) is the time to divide cells in the current cycle 
Tcombine(E.Di) the time to combine cells in the current cycle 
Tload(Mcmi, P) the time to perform the load-balancing 

 
The gather-scatter communication time is given by: 
 

( ) ( )
( )
( )
( )
( )
( )
( ) 




















+

+

+

+








 +
=

PMPISurfaceTf

PMPISurfaceTf

PMPISurfaceTf

PMPISurfaceTf

PMPISurfaceTf

PMPISurfaceTf
EPCDEPT

INTXcommiGS

RealXcommrGS

INTYcommiGS

RealYcommrGS

INTZcommiGS

RealZcommrGS

iGScomm

,..

,..

,..

,..

,..

,..
.,,,

_

8_

_

8_

_

8_

  (A.3) 

 



 

where fGS_r and fGS_I are the frequency of real and integer gather-scatters per cycle (measured 
at 160 and 17, respectively). SurfaceZ, SurfaceY, SurfaceX are processor bounday sizes (in 
words) - for the 1-D slab decomposition SurfaceZ = MIN((L.DI)

2, E.Di/2), SurfaceY = 2.L.Di, 
and surfacex = 4.Di words. MPIreal8 and MPIINT are determined by the MPI implementation 
 
The contention on the processor network when using P processors, C(P,E,) is given by: 

 

( ) 

















=

CL

P

surface

L

CL
MAXMINEPC SMP

Z

,1,
1

,
2

     (A.4) 

 
where CL is the number of communication links per node, and PSMP is the number of PEs per node. Tcomm(S,P) is the time 
taken to communicate a message of size S when using P processors: 

 

( ) ( ) ( )PSB

S
PSLPST

c
ccomm ,

,, +=       (A.5) 

 
where Lc is the Latency and Bc is the Bandwidth of the communication network whose values 
vary with the message size and processor count. 
 
The time taken to perform the all-reduce operations is modeled as: 

 
( ) ( ) ),4(.log.2. 2 PTPfPT commallredallreduce =       (A.6) 

 
where fallred is the frequency of all-reduce operations per cycle. The memory contention is 
modeled as: 

 
Tmemcon(P,E. Di) = E.DiTmem(P)      (A.7) 
 

where Tmem(P) is the measured memory contention on P processors per cell per cycle. The 
time taken to perform the cell division and cell combination at the end of each cycle is 
modeled as:  Tdivide(Ai) = Ai.Tdiv,  and  Tcombine(E.Di) = E.Di. Tcomb  respectively. Tdiv is the time 
to divide a single cell, and Tcomb is the time to check and combine cells (both are measured on 
a single processor). The time taken to perform the load balancing is modeled as: 

 
( ) ( ) ( )PMPIMTNPMPIMTNPMT alRecmcomrsvarINTcmcomisvarcmload iii

,..,.., 8__ +=      (A.8) 

 
where Nvars_i , and Nvars_r are the number of integer and real variables that are communicated 
in the load balance operation. 


